Developments in the Treatment of Pompe Disease

Login or register to view PDF.

Pages

Safety

Infusion associated reactions (IARs) occurred in approximately 50% of patients treated with Myozyme in the two infantile-onset clinical studies (52-week safety data) reported in this review. In these studies the majority of reactions were non-serious, and all were assessed as mild to moderate. Some patients were pre-treated with antihistamines, antipyretics, and/or corticosteroids.

Overall experience with Myozyme has shown that IARs occur at any time during, and mostly up to two hours after the infusion, and are more likely at the higher infusion rates IARs may occur in patients after receiving antipyretics, antihistamines, or steroids.

If an IAR occurs, regardless of pre-treatment, decreasing the infusion rate, temporarily stopping the infusion, and/or administration of antihistamines and/or antipyretics may ameliorate the symptoms. If severe infusion reaction occurs, immediate discontinuation of the administration of Myozyme should be considered, and appropriate medical treatment should be initiated. Due to the potential for severe hypersensitivity reactions, appropriate medical support measures should be readily available when Myozyme is administered. Patients who have experienced IARs should be treated with caution when Myozyme is re-administered. Patients with advanced Pompe disease may have compromised cardiac and respiratory function, which may predispose them to a higher risk of severe complications from infusion reactions. Therefore, these patients should be monitored more closely when administering Myozyme.3

Overall serious hypersensitivity reactions, including anaphylactic reactions, have been reported in 3% (eight of ~280 patients treated with Myozyme in clinical trials and expanded access programs). Significant hypersensitivity reactions generally consisted of a constellation of signs and symptoms. Reactions included one or more of the following: bronchospasm, oxygen saturation decreased, hypotension, urticaria, periorbital edema, swollen tongue, angioneurotic oedema, chest discomfort, throat tightness, tachycardia, and rash.The majority of reactions occurred within the first two hours of the infusion. Reactions were primarily managed with infusion rate reduction and/or interruption of the infusion and administration of antihistamines, corticosteroids, bronchodilators, epinephrine (in two patients) and/or oxygen. All eight patients recovered without sequelae from the reactions.

Pages

References
  1. Hirschhorn R, Reuser AJ, Glycogen storage disease type II: acid a-glucosidase (acid maltase) deficiency , in Scriver CR, Beudet AL, Sly WS, et al. (eds), The Metabolic and Molecular Basis of Inherited Disease (2001), New York: McGraw-Hill, pp. 3389-3420.
  2. Van den Hout HM, Hop W, van Diggelen OP, et al., The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature , Pediatrics (2003);112: pp. 332-340.
    Crossref | PubMed
  3. http://www.myozyme.com
  4. Kishnani PS, Corzo D, Nicolino M, et al., Recombinant human acid a-glucosidase: major clinical benefits in infantile onset Pompe disease , Neurology (2007), in press.
  5. Kishnani PS, Hwu WL, Mander H, et al., A retrospective, multinational, multicenter study on the natural history of infantileonset Pompe disease , J Pediatrics (2006);148: pp. 671-676.
    Crossref | PubMed
  6. Amalfitano A, Bengur AR, Morse RP, et al., Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial , Genet Med (2001);3: pp. 132-138.
    Crossref | PubMed
  7. Kishnani PS, Nicolino M, Voit T, et al., Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease , J Pediatr (2006);149: pp. 89-97.
    Crossref | PubMed
  8. Raben N, Fukuda T, Gilbert AL, et al., Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers , Mol Ther (2005);11: pp. 48-56.
    Crossref | PubMed
  9. Klinge L, Straub V, Neudorf U, et al., Safety and efficacy of recombinant acid alpha-glucosidase (rhGAA) in patients with classical infantile Pompe disease: results of a phase II clinical trial , Neuromuscul Disord (2005);15: pp. 24-31.
    Crossref | PubMed
  10. Klinge L, Straub V, Neudorf U,Voit T, Enzyme replacement therapy in classical infantile pompe disease: results of a ten-month follow-up study , Neuropediatrics (2005);36: pp. 6-11.
    Crossref | PubMed
  11. Ansong AK, Li JS, Grayck EN, et al., Electrocardiographic changes in Pompe disease following enzyme replacement therapy , Genet Med (2006);8: pp. 297-301.
    Crossref | PubMed
  12. Ing RJ, Cook DR, Bengur AR, et al., Anesthetic management of infants with glycogen storage disease type II: a physiologic approach , Paediatr Anaesth (2004);14: pp. 514-519.
    Crossref | PubMed
  13. Cook AL, Kishnani PS, Carboni MP, et al., Ambulatory electrocardiogram analysis in infants with Pompe disease treated with enzyme replacement therapy , Genet Med (2006);8: pp. 313-317.
    Crossref | PubMed
  14. Kishnani PS, Steiner RD, Bali D, et al., Pompe disease diagnosis and management guideline , Genet Med (2006);8: pp. 267-288.
    Crossref | PubMed